RV Electrical / Solar

Typical RV Modifications
For Off-Grid Living

Jack Mayer
www.jackdanmayer.com
Contents

• Basic concepts
• Solar Panels
• Charge controllers
• Inverters
• Batteries
• Wiring techniques
• *The Golden Rules*
• Design considerations and how it all fits together
• Recommendations

Thursday afternoon – roundtable

Slides are downloadable from our website
RV Electrical System
Very Simplified View with Solar

Graphic: Jerry Winegard
The DC Side

• Charging Sources
 – **Solar, Wind**, Grid-based Charger, Alternator

• Storage (Battery Bank)
 – Stores the Power for later consumption
 – The bigger the better (budget, space, weight)

• Consumption (Loads)
 – DC loads directly off battery (or converter)
 – AC loads require “inversion” from DC to AC (inverter) when off grid
Electrical Stuff

- AmpHours is how much current is delivered over time
- Amps=Watts/Volts
- Watts=V*A (or VA); watts is same for AC or DC
- 120 volt appliance: watts/10 = DC amps
- 120 volt appliance: AC amps x 10 = DC amps
- Solar panels: Vmp (volts max power), Voc (Volts open circuit), Imp (Current max power)

- If your TV uses 3 amps AC, 3x10=30 amps DC per hour
 - If you watch TV for 1.5 hours then you used 45 amps DC from your battery bank
RV Electrical System

Inverter With Subpanel

- Solar panels
- 500 amp Shunt
- 400 amp DC fuse
- House Battery Bank
- Distribution hubs or Buss Bars

- Genset
- TS 0
- SP 1
- SP 2
- AC Out
- AC In
- Inverter/Charger
- Combiner
- Solar controller
- Fuse
- P = Primary
- TS = Transfer Switch

- Optional AC Power Protection
- Inverter Loads
- AC Sub Panel
- AC Loadcenter
- AC Line Monitor
- Remote Gen Start
- Inverter Control
- Solar
- Trimetric Amp hour Meter

Monitor and Control Instrumentation

- Use appropriate size DC fuses
- TS0 optional; on 5th wheel SP2 can be at nose

P = Primary
TS = Transfer Switch

Plug into external power ONLY
Three Stage Charging

- **Bulk**: Current supplied at constant (max) rate while voltage rises to absorption setpoint; Often 14.2-14.6V; should be 14.8V for flooded cell
- **Absorption**: Voltage remains constant, while current is reduced as battery charges
- **Float**: After batteries reach charged state, voltage reduced and maintained. Usually 13.2-13.6V
Solar Modules

• Types
 – Amorphous
 – Poly-Crystalline
 – Mono-Crystalline

• “Typical” panel is 36 cells connected in series
 – Produces about .48 volts/cell = about 17 volts
 – Vmp varies by panel type and manufacturer
 – “High power” panels have more cells, thus higher voltage.
 – “High power” panels are used with MPPT controllers
Solar Modules

• Not very efficient; 12% - 16% energy capture
 – 1 meter of panel produces 130 – 150 watts
 – Crystalline panels are in the 16% area

• In the “real world” you get about 80% of the rated output (air pollution, sun angle, heat)
Solar Modules

Output Issues

• Heat – cells are rated at 77°F (STC)
• Available light – 1000 watts/square meter rating
 – Real world is more like 800-900 watts
 – Angle of the sun
• Shadows
• Wiring – MOST systems are under wired
• Figure on 5 hours of full sun when calculating output
Solar Modules
Output Example

- **Kyocera KD135 DX panel**
 - 135 watts
 - 17.7 volts
 - 7.63 amps
 - About $325

- Assume 4 panels on a typical installation ($1300)
- 4x135 watts = 540 watts; 4x7.63 amps = 30.52 amps
- 30.52 amps x 5 hrs sun = 153 amp hours
- MPPT boost @ 10% = 153+15 = 168 amp hours *theoretically*
- 168 – 20% = 135 amp hours, or less, in the real world
Solar Modules
So, How Many Do You Need?

- **Must do an energy audit at start of design process**
 - Kill-a-watt meter
 - Appliance Electrical-plate calculation
 - Actual use with battery monitor
 - Category guidelines

- **Typical users**
 - Low end: under 75-100 amp hours
 - Mid: 100-130 amp hours
 - Energy hog: over 150 amp hours (we know people who use over 800)

- **Most Rvers are in the Mid category**
 - 400 amp hours of battery
 - 4x130 watt panels

- **Battery Storage Estimate**
 - One “rule of thumb” is bank size in amps is “about” as big as solar array size in watts.
Solar Charge Controllers

• Types
 – Shunt, or ON/OFF controllers; not really used anymore
 – PWM (pulse width modulation); rapidly “pulses” the power on/off holding battery voltage constant
 – MPPT (maximum power point tracking); extracts “extra" power from the solar array by using excess voltage to increase charge current
Solar Charge Controllers
MPPT Characteristics

• Uses base PWM technology
• Boosts charge by 10-30%
 – Typically closer to 10% in practice
 – May see 30% or more depending on the solar module and environmental conditions (high Vmp, altitude, cool weather, discharged battery, sky clear, etc.)
• Works best in cooler conditions with low battery SOC
• Panel Vmp (voltage output) is critical; >17Vmp
• There is no doubt that it works
• Costs 150+% more than most PWM controllers. Expect to spend around $500 on controller and remote panel
Solar Charge Controllers
When to Use MPPT

• Always
 – If money is no object
 – On a limited roof-space install
 – If you have high Vmp panels
 – All panels are within .5 volts Vmp (ideally, identical panels)

• Maybe
 – With Vmp lower than 18 volts

Design for MPPT controllers unless you are on a very tight budget
Solar Charge Controllers
What to Look For

- MPPT unless on budget
- Remote mount near batteries
- Remote panel is interesting and useful, especially with MPPT
- Always buy bigger than you need – future expansion. Consider networked controllers
- Remote Temperature Sensor – required feature
- Input/output voltage
 - MPPT controllers take in high voltage (up to 150 volts) and output lower voltage (down to 12-volt, depending)
- Charge stage set points user configurable – esp. Bulk Stage
- Wire terminal input/output size (you can trim down wire size)
Solar Charge Controllers
Which One?

• Morningstar TriStar
 – My absolute favorite (2011)
 – TriStar is PWM controller in 45 and 60 amps ($150, $195)
 – TriStar MPPT is available in 45 and 60 amps ($420, $500)
 – MPPT 60 has direct Cat5 wiring to router with PC application for data analysis
 – Remote panel has advanced functions
 – Use the MPPT 60 with panels with Vmp around 28 volts
Solar Charge Controller/Panel
Design Considerations

• Best if all panels are the same, especially with MPPT
• Consider not tilting panels (use MPPT and more capacity to compensate)
• Panels MUST be located so they are never shaded – if space constrained, look at AM Solar panels which are narrower
• Use higher voltage panels if needed for distance
• If using MPPT ensure Vmp of at least 17V; high voltage panels are best
• Buy more controller capacity than needed; MPPT unless on budget
• Use a combiner box on the roof
• Use remote display
Solar Charge Controller/Panel
Installation Considerations

- AM Solar has good panel mounting system – worth the $60; or build own out of aluminum
- If roof is solid use VHB Tape or 3M Fast Cure 5200 Marine adhesive
- Stainless 1” #10 or #12 screws – only need 1 per leg – embed in caulk puddle
- Attach wiring to roof with puddles of caulk; when dry overcoat puddle with more caulk
- Roof wiring – #10 tray cable homerun to combiner box
- Combiner-to-controller use #4 welding wire; protect exposed wire on roof from UV
- Consider fusing individual panel runs at combiner input (debugging is easier)
- Use vent to run wire to basement area
- Put controller as close to battery bank as possible
- Use 14.8V as bulk charge for flooded cell batteries
- Use A/C (air conditioner) disconnect box for fusing IN/OUT of controller; or Midnight Solar “Baby” breaker box
Combiner Box

Outback FLEXWave PV8 - $120

AM Solar CB Combiner - $50
Inverters, Batteries and Wiring

Typical RV Modifications

Jack Mayer, www.jackdanmayer.com
RV Electrical System
Inverter With Subpanel

- Solar panels
- Combiner
- 500 amp Shunt
- 400 amp DC fuse
- House Battery Bank
- Distribution hubs or Buss Bars
- Genset
- Solar controller
- AC Out
- Solar controller
- Fuse
- AC In
- Inverter/Charger
- Monitor and Control Instrumentation
 - Trimetric
 - Amp hour Meter
 - Solar
 - AC Line Monitor
 - Remote Gen Start
 - Inverter Control

- Optional AC Power Protection
- AC Sub Panel
- AC Loadcenter
- 30A Fuse
- 30 or 50 amp shore power

TS = Transfer Switch

- P = Primary
- TS0 optional; on 5th wheel SP2 can be at nose

- Use appropriate size DC fuses
- Plug into external power ONLY

10/17/2011
RV Electrical, 2011 Heavy Duty Truck Rally
Inverters

• Inverters are the “heart” of the system – most expensive single component ($1100-2500+ for advanced inverter/charger)

• “Modified Sine Wave” vs. Sine Wave
 – About 5% of items will not run on MSW
 – Small, occasional-use systems might get by with MSW
 – Spend the extra money for a good Sine Wave inverter if setting up a whole-house system

• What to look for
 – Sine wave
 – Size – in RVs 2000 watts is almost always enough; charger output may be reason to go larger
 – Inverter/charger, or separate components – in RVs inverter/charger is preferred
 – Battery charge section – bigger is better if using AGM batteries, esp. if generator charging
 – Charger control – set points changeable, charger on/off, auto “back off”
 – Does design place the inverter “inline” or in a subpanel
 – Instrumentation/control – unified control, battery monitor
 – AGS – automatic generator start; can even start larger portables

• Magnum is my #1 choice
Instrumentation
What Really Matters?

- *Cumulative amphours* into the battery bank (Magnum BMK, Trimetric, LinkPro, Blue Sky IPN ProRemote, etc)
- Instant amphour measure; power use *right now*
- Voltage
- AC line voltage/amps
- Control Functions: Inverter off/on, charger off/on, Genset off/on

Lots more monitor functions are typically available, but the above are critical
Battery Types

- RV batteries are Lead-acid (vs. Lithium, NiCd, etc)
 - Flooded-cell (wet cell)
 - Sealed Flooded (maintenance free)
 - Gel (sealed) - no longer used
 - AGM (sealed)

- Starting (SLI)
 - High starting current for short time
 - Thousands of low discharge cycles (10% discharge or less is typical)
 - Only capable of 30-50 deep cycles (50-80%)

- “Deep Cycle” (golf cart, L-16, etc.)
 - Thicker and heavier plates allow deeper discharge levels
 - Designed for “lots” of 50% or more discharges
 - Weigh much more than starting batteries
Battery Characteristics

• Golf Cart
 – Last 3-5 years, sometimes as long as 8 years
 – Must be vented
 – Need to be monitored and “watered”
 – Charge at C/3 or C/4 (where C is the total Ah of the bank)
 – Cheap & readily available: $65-125

• AGM
 – Last 4-7 years
 – Resist vibration better than golf cart
 – Do not outgas – can be placed anywhere
 – Zero maintenance - no attention at all (other than terminals)
 – Can be charged faster and at higher rate (C*4, or more)
 – Cost far more: 2-4 times as much
Battery Connections

Parallel Hookup
- Voltage stays the same. Connect all + to each other, and all – to each other.
- Amperage adds.
- 4 – 12 volt 100 amp batteries would yield 400 amp hours at 12 volts.
- Always take “load” wires from “opposite” sides to balance bank.

Series/Parallel Hookup
- In series, voltage adds. Connect + to -.
- Amp hours stay the same.
- Two sets of batteries in series are then joined in parallel to double amp hours.
- 4x 6-volt 210 amp batteries yield 420 amp hours at 12 volts.

2- 6-volt in series = 12-volts; Amp hours remain the same.
Random Battery *Stuff*

- Check flooded cells water level every month
- Charge only with solar when you can; easier on the batteries – no constant float
- Use proper size wires for interconnect; anti-oxidant, proper crimps, adhesive heat shrink
- Diagonal taps
- Catastrophe fuse – based on inverter size
- Equalize only if needed – AGMs not generally equalized
- No direct load attachments to battery; attach loads at power posts
- Always use temperature compensation for charging
- Design system for a 25-30% depth of discharge (DOD)
- **You WANT a battery monitor that uses cumulative amphours**
Wiring

• Solar panels to combiner
 – #10 tray cable; individual “home runs”
• Combiner to solar controller
 – #4 welding wire
 – Probably #2 between controller and batteries
• Control wires: instrumentation-to-sensors
 – Generally telephone cable or cat5
• DC cables between inverter and battery bank
 – 2/0 or 4/0 welding cable; treated lugs; adhesive heat shrink
• AC wiring between inverter and AC loadcenter
 – #6 conventional AC wire for 50A, #10 for 30A; use AC wiring techniques; tape wire nuts to wires (vibration)
Wiring Techniques

- Coat wires with anti-oxidant before crimping
- Do not solder large lugs (arguable – my opinion); if you do, use Fusion lugs
- DO solder any brake controller connections, and you can solder any small wires
- With wire nuts, tape them to the wires after twisting on (vibration issues)
- Use adhesive heat shrink, color coded; use colored tape if no colored heat shrink
- Use welding wire for battery/inverter connections; never less than 2/0
- Power posts upstream of shunt for all load connections
- Always install a DC fuse center, fed from power posts/bussbar; convenience
- In trucks: always isolate interface to truck electrical with relays
- Use a ratchet crimper on small lugs – less than $30 at auto stores; on large lugs hammer crimper will work IF used correctly
- Always use a catastrophe fuse near battery
- Battery cables: build to length, but leave slack (batteries change)
- If adding a subpanel for inverter circuits make sure to keep neutral and ground wires separate – NO BONDING
Sample System
High End

- **Inverter**: Magnum MS2812 ($1900)
- **Solar Controller**: MorningStar MPPT 60 with remote (TS-RM2) ($620)
- **Battery Bank**: 8 – LifeLine GPL-4C 6 volt AGM batteries (880 Ah rating) ($350 ea)
- **Solar**: 4 – Sun 200 watt panels ($268 ea)
- **Components**:
 - AM Solar Large combiner ($60)
 - MidNite Solar Magnum E-Panel ($600)
 - Wire, lugs, etc. ($300)

- **Total $6000**
Sample System

Economy

- Heart (Xantrex) 458 Modified Sine Wave Inverter 2000 watt/30 amp pass thru. With panel.
- Trace C40 charge controller. PWM controller, not an MPPT.
- Trimetric RV 2025 Monitor. Has cumulative amp hours.
- 3 – Sun 185 watt Solar Panels. Best price/size/performance tradeoff. You can add one more panel with the C40 controller.
- 4 – Sam’s Club 6 volt Golf Cart batteries (410 Ah rating).
The Golden Rules

• Solar Panels
 – Use high voltage panels (around 28 volts) on any but the smallest systems
 – Price panels on a per-watt basis. There is not much difference in panels.
 – Use serial/parallel connection to get higher voltage, when required. Panels must be matched.
The Golden Rules

• Wiring
 – Wire size is CRITICAL. It is the single-most common issue with installations. Use voltage/distance calculators. Then go heavier.
 – Manufacturers almost never provide adequate wiring
 – Wire for 2% loss or less
 – Use quality lugs, and properly attach them; use dielectric grease and adhesive heat shrink
 – Fuse before/after controller; catastrophe fuse at battery bank
 – Use combiner on roof; I prefer a Midnight Solar DIN breaker box
 – Use distribution buss bar(s) near battery to tie loads together.
 – Make sure the shunt has no loads between it and the battery.
The *Golden* Rules

- Solar Controller
 - Use an MPPT controller; high voltage; boost in the 10%+ range is realistic
 - Controller must allow adjustable voltage and charge times
 - Position close to the battery bank
 - Make SURE the wire size to the batteries is correct. It will be bigger than what comes from the roof in most cases.
 - Temperature compensation is NOT an option – use it.
The Golden Rules

• Batteries
 – Balance the system; have enough batteries for the amount of watts of panels you have
 – Rule of thumb: 1 amp of storage for each watt of solar panel. Generalization – this is not “exact”.
 – Flooded cell batteries charge at 14.8 volts NOT at 14.4/14.6 volts that you commonly see.
 – AGMs have advantages and are ALWAYS better, but cost much more.
 – Solar alone generally will NOT bring a bank up to “full” state of charge.
 – Use a battery monitor with cumulative amphours (like a Trimetric or LinkPro).
 – With flooded cell batteries check specific gravity at least every 6 months. Equalize if required.
 – A desulfator “may” be helpful. Reports vary in RV use.
The *Golden* Rules

- Inverter
 - Wiring is critical. Never less than 2/0 and usually 4/0
 - Short distance to the batteries
 - Catastrophe fuse
 - Remote display/control is important
 - Do not use too large an inverter for your needs. It is inefficient. Consider second small inverter for small loads.
 - Charge section is critical if using AGM batteries. You want a LARGE charger with AGMs. 125 amps +
 - On flooded cells properly set the charge amperage
 - Wire through a subpanel. Wired in-line is OK for a 30-amp RV, but a subpanel is preferred. Do not wire 50-amp in-line.
 - Temperature compensation is NOT an option – use it.
 - Build in provisions for removing inverter for service or upgrading your RV. AC wire length and junction box.
The Phased Approach
You Don’t *Have* to Do It All At Once

• First: *You MUST* design and understand the entire system
• Batteries
 – Upgrade your bank, new battery box, interconnects, relocate, revise house wiring
 – AGM or flooded cell?
• Battery Monitor
 – Trimetric or equivalent
 – Installing shunt has implications on wire organization
• Charging
 – Generator, Alternator, converter upgrade
• Inverter/Charger
 – Could start with “point of use” small inverter
 – Later add whole-house inverter
 – AC electrical system modification/implications
• Solar/Wind
 – Tax credits encourage adding; no cap on amount – 30% CREDIT on panels, labor and wiring
Parts Sources

• Power Posts, Blue Sea distribution centers, other marine components: http://dogbytecomputer.com

• Lugs, adhesive heat shrink, hammer crimpers, DC fuses/breakers, Trimetric, Iota transfer switches, fuse blocks, distribution blocks, battery post connectors/extenders, Anderson connectors, misc. components: http://solarseller.com/

• Battery isolators/combiners, Solid state relays: http://www.hellroaring.com/